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MARKOV CHAINS IN SMALL TIME INTERVALS

STIG I. ROSENLUND, * University of Géteborg

Abstract

For a time-homogeneous continuous-parameter Markov chain we show that
as ¢ — 0 the transition probability p,, (¢) is at least of order +"™, where r(n,j)is
the minimum number of jumps needed for the chain to pass from n to j. If the
intensities of passage are bounded over the set of states which can be reached
from n via fewer than r(n,j) jumps, this is the exact order.

BIRTH-DEATH PROCESS; LOCAL BEHAVIOUR; MARKOV CHAIN

1. Definitions and results

Let N(t), t =0, be a time-homogeneous Markov chain with the integers as
state space. For ¢t =0 let

Pui(t)=P(N(u +1)=j | N(u) = n),
G =iy 0),

qn = E qni-

We assume 0 =g, < for all n.
The expressions appearing in the theorem below are defined in the following

way. Put r(n,n)=0 and c,. =1. For n#j define the subset of the positive
integers

G.; = {r 13k, 0=i =r,suchthat ko=n, k, =j and H Gri_ ok >0} ,
i=1

which consists of those integers r such that N(¢) can pass from n to j viar jumps.
If G,; is empty let r(n,j)=c and c,; =0. If G,, is not empty, let r(n,j)=
min G,;, which is the minimum number of jumps required to pass from n to j.
Let s7;, m =1,2,---, be an enumeration of those sequences (ko, - - -, k,) such
that r =r(n,j), ke=n, k, =j and gu,s, " * Gs,_,s, >0. Here s7;# s2; for m# u,
but they may be permutations of each other. Let
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a7=I1qq .k with (ko -, k)=sm.
i=1

Then we can define ¢,; = Z,, ar;, the sum of r(n, j)-long products of intensities of
transition starting at n and ending at j. Possibly c,; = . When g.; > 0 we have of
course r(n,j)=1 and c,; = g,;. If ¢.; =0, then j is inaccessible from n, so that
pri(8)=0.

The following result is a generalization of the infinitesimal conditions of the
process. Let n and j be fixed integers.

Theorem.

(i) Nminf,_p.; ()7 =z ¢, /r(n, ).

(i) If g =b.,; <o when r(ni)=r(nj)—1, then c.; < and p,;(t)=
Cajt " fr(n, !+ 0 (") as t —>0.

(iii) If g = b.; <o when r(n, i) = r(n, j), then the residual in (i) is O (¢'""").

In words, p.; () is always at least of order t""*". If ¢; is bounded over the set of
states i which can be reached from n via fewer than r(n, j) jumps, this is the
exact order. If, in addition, g; is bounded over the set of states accessible from n
in r(n, j) jumps, the remainder term is at most of order ¢'*”*'. We note that the
same result holds for the distribution function F,; for a first-passage time from n
to j, since F,; is equal to p.; when ¢; = 0 and c¢,.; does not depend on the g;;.

The assumption of (ii) holds if at each state i such that r(n,i)=r(n,j)—2
there are only finitely many states that can be reached in a single jump, because
then the set of states i of the assumption is finite. Similarly for the assumption of
(iii), which thus is true for example for a birth-death process with birth rates
An = @uns1 and death rates g, = qn.-.. Here r(n,j)=|n —j| and

Hivi " o, j<n
Crj =

At Ao, j>n

For a finite Markov chain the result of (iii) follows from the representation
P(t)=e =T1+1Q+(t}2)Q*+ (£°/6)Q* + - - -,

where P(t)={p.;(t)} and Q ={q.;}, if one observes that {Q*},; is 0 for
k <r(n,j)and c.; for k = r(n, j). Besides its intrinsic interest the theorem is, for
instance, useful as a check on the leading term of a MacLaurin expansion for p,.;,
or as a check on the order of its Laplace transform at . In applied probability
the theorem can be used in problems of Markovian decision processes which are
Markov chains controlled at the discrete set of time epochs h,2h,3h,---. The
limiting behaviour of objective functions as & — 0 can be obtained with the aid
of the theorem. See Rosenlund (1978b), p. 141.
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2. Proof

If n = j or c.; =0 the theorem is trivially true. Thus let n and j be fixed such
that n#j and c,; >0. Assume that N(O)=n. Let r(n,j)=r and Sny=
(Ko, - * 5 km, ). Define the event

An: ={N(t) = and the passage from n to j goes over s7; with
exactly r jumps}.

Let T, be the time of the first jump and let Ti be the length of time between the
(k — 1)th and the kth jump. If N(t) = then either some A,,, has occurred or
else more than r jumps have taken place in (0, 1], i.e.

{uafevo-ne{u afume +T.sn,

Now A,.. occurs if and only if the following takes place. First T, = f, < t and the
first jump is to k... The density of T\ is q. exp(— q.t,) and the probability of a
jump to Ky iS gk, /q- Secondly T>=t, <t —t, and the second jump is to k..
Given N(T\) = k.., the density of T is qu,, exp(— g,,t-) and the probability of a
jump to k.. is g, «../qx,,. We can go on in this way until N(T, + - - + T)=j.
Then finally T,., must be greater than t —t,—---—¢,, and this has the condi-
tional probability exp(—gq;(t —t,— -+ —t)). In other words

P(A,.)= fn Gnkr €XP(— Gut1) L i €XP (— G, 12)

T (=g, e =t )
¢
With
bm = max(qm Qs * " "5 Q1 ql)

we thus have
Yexp(— but)art IV Ep, ()= S amt Irt+P(Ti+ -+ T =1).

From the left inequality we get (i) by monotone convergence. Under the
assumption of (ii) it holds b,. = max (b.;, q;) = b, say. Furthermore, by condition-
ing with respect to N(Ty), -+, N(T,+---+ T,) it is easy to show that P(T,+
o+ T =)= P(T,. = t)F; (1), where F,(t)=1—e ™" Hence

e et P = P ()= et I+ P(T S 1) Dy e ™ (bt)< /K.
k=r

This proves (ii). Finally, if the assumption of (iii) holds, then
P(Ti+- -+ T =) =FU") =001
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3. Example

We shall illustrate that the conditions of the theorem cannot be much
weakened. Let q_.=0,9-1=q-12=1,40=2, go-1 =2~ 7°/6 = a =0.355, gox =
k2 for k=1, g = Qx>0 for k =1, g = qu—2=(k +2) for k = —3. We
shall study po_»(t) for the cases g = 1 and q« = 2k? (k = 1). For the first case the
condition of (ii) is satisfied, but not that of (iii), and the conclusion of (iii) does
not obtain for n =0 and j = — 2. For the second case the condition of (ii) is not
satisfied, and the conclusion of (ii) does not obtain. We have r(0, —2) =2 and
Co->= a. Assume N(0)=0. Let

A, ={N(t) = —2 and the passage goes via —1 in two jumps},
B., ={N(t) = —2 and the passage goes via k and — k —2 in three jumps}.
We have

P(A)= f a exp(—2t) f "exp(— t)dt.dt,
0 (U
=la —ae”' +iae™ =iat’+ O(),

P(B.)= L k2 exp(—2t) L g exp(— qutd) J'n T KPexp(— k*t)dtdtad.

Let H(t) = 2i- P(Bx), then poo(t)=P(A)+H(t). Now 127~ *H(t) is a
distribution function, and the Laplace transform H(s)=[oe “dH(t) is

He)= 2 G0 a6 o) -
When g« =1 we get
H(s)={25(s + 1) (s + 2} {msi(er + Df(er= — 1) — 1} ~ bms >*(s > ).
Hence H(t) ~ (47%/15)t*% (t = 0) (see Feller (1971), p. 632 and p. 445). It follows

that po_.(t) =3at*+ O(t*°), but the conclusion of (iii) does not hold. When
g« =2k’ we have

2 <& 1
H(s)_ 2 Z (s+k2 s+2k2)

1 (wsz(ez"’ +1) 77(25)2(62"(25)2 + 1))
s(s +2)\ e2ms—1 e2ntsy — 1

~a(l=8s™" (s —>).
Hence
Poa(t) ~ H(t) ~ 341 — H)aie"s (t—0).
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It is easily seen that this counterexample to putative generalizations of the
theorem will hold even if we make the chain recurrent by allowing transitions
from —2.
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